TENTATIVE

Kaohsiung Opto-Electronics Inc.

FOR MESSRS:	DATE : (Oct. 26 th	,2017

TECHNICAL DATA

TX16D201VM0BAB

Contents

No.	ITEM	SHEET No.	PAGE
1	COVER	7B64LTD-2567-1	1-1/1
2	RECORD OF REVISION	7B64LTD-2567-1	2-1/1
3	GENERAL DATA	7B64LTD-2567-1	3-1/1
4	ABSOLUTE MAXIMUM RATINGS	7B64LTD-2567-1	4-1/1
5	ELECTRICAL CHARACTERISTICS	7B64LTD-2567-1	5-1/2~2/2
6	OPTICAL CHARACTERISTICS	7B64LTD-2567-1	6-1/2~2/2
7	BLOCK DIAGRAM	7B64LTD-2567-1	7-1/1
8	LCD INTERFACE	7B64LTD-2567-1	8-1/7~7/7
9	OUTLINE DIMENSIONS	7B64LTD-2567-1	9-1/2~2/2

ACCEPTED BY: _____ PROPOSED BY: ______

KAOHSIUNG OPTO-ELECTRONICS INC. SHEET NO. 7B64LTD-2567-1 PAGE 1-1/1

2. RECORD OF REVISION					
DATE	SHEET No.	SUMMARY			

KAOHSIUNG OPTO-ELECTRONICS IN	IC.
INACIOIONO OI TO-LLECTIVONICO III	J

3. GENERAL DATA

3.1 DISPLAY FEATURES

This module is a 6.4" XGA of 4:3 format LTPS TFT. The pixel format is vertical stripe and sub pixels are arranged as R (red), G (green), B (blue) sequentially. This display is RoHS compliant, COG (chip on glass) technology and LED backlight are applied on this display that made in Taiwan.

Part Name	TX16D201VM0BAB
Module Dimensions	153.0(W) mm x 118.0(H) mm x 8.7 (D) mm typ.
LCD Active Area	129.792(W) mm x 97.344(H) mm
Pixel Pitch	0.126(W) mm x 0.126 (H) mm
Resolution	1024 x 3(RGB)(W) x 768(H) dots
Color Pixel Arrangement	R, G, B Vertical stripe
LCD Type	LTPS TFT; Transmissive Normally Black
Top Polarizer Type	Anti-glare Polarizer Film
Display Type	Active Matrix
Number of Colors	16.7M Colors (8-bit RGB)
Backlight	Light Emitting Diode(LED)
Weight	190g typ.
Interface	LVDS; 20 pins
Power Supply Voltage	3.3V for LCD; 12V for Backlight
Power Consumption	0.231 W for LCD; 4.56 W for Backlight
Viewing Direction	Super Wide Version (In-Plane Switching)

3-1/1

4. ABSOLUTE MAXIMUM RATINGS

4.1 ENVIRONMENTAL ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Min.	Max.	Unit	Remarks
Supply Voltage	V_{DD}	-0.3	4.5	V	-
Input Voltage of Logic	V_{l}	-0.3	V_{DD}	V	Note 1
Operating Temperature	Тор	-30	80	°C	Note 2
Storage Temperature	Tst	-30	80	°C	Note 2
Backlight Input Voltage	V_L	0	15	V	-

- Note 1: The rating is defined for the signal voltages of the interface such as CLK and pixel data pairs.
- Note 2: The maximum rating is defined as above based on the chamber temperature, which might be different from ambient temperature after assembling the panel into the application. Moreover, some temperature-related phenomenon as below needed to be noticed:
 - Background color, contrast and response time would be different in temperatures other than $25\,^{\circ}\mathrm{C}\,.$
 - Operating under high temperature will shorten LED lifetime.

KAOHSIUNG OPTO-ELECTRONICS INC.	SHEET NO.	7B64LTD-2567-1	PAGE	4-1/1
---------------------------------	--------------	----------------	------	-------

5. ELECTRICAL CHARACTERISTICS

5.1 LCD CHARACTERISTICS

$$T_a = 25$$
 °C, Vss = 0V

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
Power Supply Voltage	V_{DD}	-	3.0	3.3	3.6	V	-
Differential Input	.,,	"H" level	$0.7V_{DD}$	-	V_{DD}	>/	Niata 4
Voltage for LVDS Receiver Threshold	Vı	"L" level	V _{SS}	-	0.3V _{DD}	mV	Note 1
Power Supply Current	I _{DD}	V _{DD} =3.3V	-	70	-	mA	Note 2
Frame Frequency	f_{Frame}	-	55	60	65	Hz	-
CLK Frequency	f_{CLK}	-	-	56.3	-	MHz	-
Input Voltage of Logic	Vı	"H" level	2.1	-	3.6	.,	
		"L" level	0	-	0.5	V	_

Note 1: VCM 1.2V is common mode voltage of LVDS transmitter and receiver. The input terminal of LVDS transmitter is terminated with 100Ω .

Note 2: An all white check pattern is used when measuring I_{DD} . f_{Frame} is set to 60 Hz. Moreover, 0.5A fuse is applied in the module for I_{DD} . For display activation and protection purpose, power supply is recommended larger than 1.25A to start the display and break fuse once any short circuit occurred.

SHEET NO.

5.2 BACKLIGHT CHARACTERISTICS

T_{a}	= 25	$^{\circ}C$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
LED Input Voltage	V _L	-	10.8	12.0	13.2	V	Note1
LED Forward Current	,	0% duty	350	380	420	A	Note 0
(Dim Control)	ΙL	100% duty	-	10	-	mA	Note 2
LED lifetime	-	I _{LED} = 380 mA	-	70K	-	hrs	Note 3

- Note 1: As Fig. 5.1 shown, LED current is constant, 380 mA, controlled by the LED driver when applying 12V.
- Note 2: Dimming function can be obtained by applying PWM signal from the display interface DIM (No.6pin) of CN2. The recommended PWM signal is 200Hz ~ 1K Hz with 3.3V amplitude.
- Note 3: The estimated lifetime is specified as the time to reduce 50% brightness by applying 380 mA at 25°C.

NO.

6. OPTICAL CHARACTERISTICS

The optical characteristics are measured based on the conditions as below:

- Supplying the signals and voltages defined in the section of electrical characteristics.
- The backlight unit needs to be turned on for 30 minutes.
- The ambient temperature is 25 °C.
- In the dark room less than 100lx, the equipment has been set for the measurements as shown in Fig.

T_{α}	= 25	°C. 1	Frama	$=60\mathrm{Hz}$	VDD = 3.3V
-a		\sim , ,	Frame	- 00112,	V DD - 0.0 V

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
Brightness o	f White	-	1 00 0 00	-	1400	-	cd/m ²	Note 1
Brightness Ur	niformity	-	$\phi = 0^{\circ}, \theta = 0^{\circ},$	75	-	-	%	Note 2
Contrast F	Ratio	CR	I _{LED} = 380 mA	-	800	-	1	Note 3
Response	Time	$T_r + T_f$	$\phi = 0^{\circ}, \theta = 0^{\circ}$	-	30	-	ms	Note 4
NTSC R	atio	-	$\phi = 0^{\circ}, \theta = 0^{\circ}$	-	60	-	%	-
		θx	$\phi = 0^{\circ}$, CR ≥ 10	-	85	-		
\/iowing A	nalo	$\theta x'$	$\phi = 180^{\circ}, CR \ge 10$	-	85	-	Dograd	Note 5
Viewing A	arigie	θ y	$\phi = 90^{\circ}$, CR ≥ 10	-	85	-	Degree	
		θ y'	$\phi=270^{\circ}, \text{CR} \geq 10$	-	85	-		
	Dod	Χ		-	0.62	-		
	Red	Υ		-	0.33	-		
	Croon	Χ		-	0.32	-		
Color	Green	Υ		-	0.58	-		
Chromaticity	Blue	Х	$\phi = 0^{\circ}, \theta = 0^{\circ}$	-	0.16	-	-	Note 6
	blue	Υ		-	0.08	-		
	White	X		-	0.31	-		
	vviile	Υ		-	0.33	-		

Note 1: The brightness is measured from the panel center point, P5 in Fig. 6.2, for the typical value.

Note 2: The brightness uniformity is calculated by the equation as below:

$$Brightness\ uniformity = \frac{Min.\ Brightness}{Max.\ Brightness} \times 100\%$$

, which is based on the brightness values of the 9 points measured by BM-5 as shown in Fig. 6.2.

Fig. 6.2

SHEET

NO.

7B64LTD-2567-1

Note 3: Continuously operating the test pattern (see below chess pattern Fig.6.3) on display for 2 hours at 25℃ then switch to completely white pattern, the previous test pattern shall disappear within 2 seconds.

Fig.6.3

Note 4: The Contrast Ratio is measured from the center point of the panel, P5, and defined as the following equation:

$$CR = \frac{Brightness of White}{Brightness of Black}$$

Note 5: The definition of response time is shown in Fig. 6.4. The rising time is the period from 10% brightness to 90% brightness when the data is from black to white. Oppositely, Falling time is the period from 90% brightness falling to 10% brightness.

Fig.6.4

Note 6: The definition of viewing angle is shown in Fig. 6.5. Angle ϕ is used to represent viewing directions, for instance, $\phi = 270^{\circ}$ means 6 o'clock, and $\phi = 0^{\circ}$ means 3 o'clock. Moreover, angle θ is used to represent viewing angles from axis Z toward plane XY.

The display is super wide viewing angle version, so that the best optical performance can be obtained from every viewing direction.

Fig 6.5

Note 7: The color chromaticity is measured from the center point of the panel, P5, as shown in Fig. 6.2.

KAOHSIUNG OPTO-ELECTRONICS INC.	SHEET NO.	7B64LTD-2567-1	PAGE	6-2/2
---------------------------------	--------------	----------------	------	-------

7. BLOCK DIAGRAM $V_{\text{DD}} \\$ Power Circuit Gate Driver Gate Driver 6.4 inch XGA LCD panel Source Driver with timing controller Signals Dim LED Control LED Backlight Circuit

Note 1: Signals are SD, AMODE, CLK and pixel data pairs.

8. LCD INTERFACE

8.1 INTERFACE PIN CONNECTIONS

The display interface connector (CN1) is DF14H-20P-1.25H made by HIROSE and pin assignment is as below:

Pin No.	Symbol	Signal	Pin No.	Symbol	Signal
1	V_{DD}	Dower Cumply for Logic	11	IN2-	Divol Data
2	V_{DD}	Power Supply for Logic	12	IN2+	Pixel Data
3	V _{SS}	CND	13	V _{SS}	GND
4	V _{SS}	GND	14	CLK IN-	Dival Clask
5	INO-	Pixel Data	15	CLK IN+	Pixel Clock
6	IN0+	Pixei Dala	16	V _{SS}	GND
7	V _{SS}	GND	17	IN3-	Divel Date
8	IN1-	Divel Date	18	IN3+	Pixel Data
9	IN1+	Pixel Data	19	SD	Scan Direction Control (Note 2)
10	V _{SS}	GND	20	AMODE	Open / L:JEIDA, H:VESA

Note 1: IN n- and IN n+ (n=0, 1, 2, 3), CLK IN- and CLK IN+ should be wired by twist-pairs or side-by-side FPC patterns, respectively.

Note 2: Scan direction is available to be switched as below.

SD:H

SD: L or open

The backlight connector (CN2) is SM06B-SHLS-TF, and pin assignment is as below:

Pin No.	Signal	Signal
1	V_{LED}	12VDC
2	V_{LED}	12VDC
3	GND	Ground
4	GND	Ground
5	V_{LED}	12VDC
6	DIM	3.3V @200Hz~1000Hz

Note 3: The relationship of brightness and Dim control are shown as below.

KAOHSIUNG OPTO-ELECTRONICS INC. SHEET NO. 7B64LTD-2567-1 PAGE 8-1/7

8.2 TIMING CHART

Fig. 8.1 Horizontal Timing of VS-HS-DE Mode

Note 1: CLK's falling edge is the time to latch data and count (thp + thb), therefore, data sending and Hsync's falling edge should start when CLK's rise edge.

Fig. 8.2 Vertical Timing of VS-HS-DE Mode

Note 2: Vsync's falling edge needs to start with Hsync's falling edge simultaneously to count (tvp + tvb).

PAGE

LVDS DATA FORMAT

(1) 8Bit Mode (Amode=H)

(2) 8Bit Mode (Amode=L/Open)

8.3 TIME TABLE

The column of timing sets including minimum, typical, and maximum as below are based on the best optical performance, frame frequency (f_{Frame}) = 60 Hz to define. If 60 Hz is not the aim to set, 55~65 Hz for f_{Frame} is recommended to apply for better performance by other parameter combination as the definitions in section 5.1.

A. HS-VS-DE MODE

	Item	Symbol	Min.	Тур.	Max.	Unit
	CLK Frequency	fclk	51	56.3	66	M Hz
	Display Data	thd	1024	1024	1024	
Horizontol	Cycle Time	th	1096	1197	1295	
Horizontal	Pulse Width	thp	2	10	20	CLK
	Pulse Width and Back Porch	thp + thb	42	138	206	
	Front Porch	thf	30	35	65	
Vertical	Display Line	tvd	768	768	768	
	Cycle Time	tv	776	784	849	
	Pulse Width	tvp	2	4	10	Н
	Pulse Width and Back Porch	tvp + tvb	6	8	35	
	Front Porch	tvf	2	8	20	

8.4 LVDS RECEIVER TIMING

RinX= (RinX+)-(RinX-)	(X=0,	1,	2,	3)
--------------	-----------	-------	----	----	----

	Item	Symbol	Min.	Тур.	Max.	Unit
CLK	Cycle frequency	1/tcLK	51	56.3	66	MHz
	0 data position	tRP0	1/7* t _{CLK} -0.55	1/7* t _{CLK}	1/7* t _{CLK} +0.55	
RinX (X=0,1,2,3)	1st data position	tRP1	-0.55	0	+0.55	
	2nd data position	tRP2	6/7* t _{CLK} -0.55	6/7* t _{CLK}	6/7* t _{CLK} +0.55	
	3rd data position	tRP3	5/7* t _{CLK} -0.55	5/7* t _{CLK}	5/7* t _{CLK} +0.55	ns
	4th data position	tRP4	4/7* t _{CLK} -0.55	4/7* t _{CLK}	4/7* t _{CLK} +0.55	
	5th data position	tRP5	3/7* t _{CLK} -0.55	3/7* t _{CLK}	3/7* t _{CLK} +0.55	
	6th data position	tRP6	2/7* t _{CLK} -0.55	2/7* t _{CLK}	2/7* t _{CLK} +0.55	

8.5 DATA INPUT for DISPLAY COLOR

					Red	Data	1				Green Data						Blue Data								
Input		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	B4	ВЗ	B2	B1	В0
colo	r	MSB							LSB	MSB							LSB	MSB							LSB
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red		:	•••	•••	•••	:	•••	•••	:		•••	•••	•••	•••	:	•		•••	•••	•	:		•••	•••	:
Red	:	:	:	:		:	:	:	:	:		:	:	:	:	:	:	:		:	:	:		:	:
	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Green	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	:	:	:	:	:	:	:	:	:	:	•••	:	:	:	:	3	:	:	:	3	:	:	•••	:	:
	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Dide	:	:	••	:	•••	:	:	:	:	:	••	:	:	:	:	:	••	•	•••	:	:	:	••	:	:
	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
			-	-																					

8.6 POWER SEQUENCE

- Note 1: In order to avoid any damages, V_{DD} has to be applied before all other signals. The recommended time period is 1 second (0.2 second is minimum). Hot plugging might cause display damage due to incorrect power sequence, please pay attention on interface connecting before power on.
- Note 2: In order to avoid uncompleted patterns in transient state, It is recommended that switching the backlight on is delayed for 1 second after the signals have been applied (0.1 second is minimum).
- Note 3: Off sequence is same. The time period from backlight off to signal off and signal off to power off are recommended 1 second. No damage is left if they are turned off simultaneously, but display irregular might be observed.
- Note 4: In order to avoid any damages, the interval time from power off to power on shall be 1 second minimum.
- Note 5: In order to avoid high Inrush current, V_{DD} & V_{LED} rising time need to set at $0.5 \text{ms} < V_{DD} \& V_{LED} < 10 \text{ms}.$

9. OUTLINE DIMENSIONS

Note 1: Within 0.147Nm (1.5kgfcm) of M2 screw torque is recommed.

General Tolerance:±0.5mm Scale: NTS Unit: mm

KAOHSIUNG OPTO-ELECTRONICS INC.	SHEET No.	7B64LTD-2567-1	PAGE	9-1/2
---------------------------------	--------------	----------------	------	-------

9.2 REAR VIEW

General Tolerance:±0.5mm

PAGE 9-2/2

Scale : NTS Unit : mm

KAOHSIUNG OPTO-ELECTRONICS INC. SHEET No. 7B64LTD-2567-1